分治法-归并排序

数据结构 专栏收录该内容
9 篇文章 0 订阅

一、前言

归并排序

归并排序是建立在归并操作上的一种有效的排序算法,速度仅次于快速排序,为稳定排序算法,一般用于对总体无序,但是各子项相对有序的数列。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用,归并排序将两个已排序的表合并成一个表。

分治法:
  • 分–将问题分解为规模更小的子问题;
  • 治–将这些规模更小的子问题逐个击破;
  • 合–将已解决的子问题合并,最终得出“母”问题的解。

二、程序算法

java算法
public static void main(String[] args) {
        int[] arr1 = {14,12,15,13,11,16};
        System.out.println(Arrays.toString(arr1));
        mergeSort(arr1,0,arr1.length-1);
        System.out.println(Arrays.toString(arr1));
    }

    public static void mergeSort(int[] arr,int l,int r) {
        //0 4
        if (l<r) {
            int q = (l+r)/2;
            mergeSort(arr,l,q);递归,将数组切割至最小(1个元素)
            mergeSort(arr,q+1,r);//同上
            merge(arr,l,q,r);//再将相邻的二个元素合并、排序,往上递归,直至最后合并成一个最大的有序数组
        }
    }

    /**
     *
     * @param arr  排序数组
     * @param l    数组最左边下标
     * @param q    数组中间位置下标
     * @param r    数组最右位置下标
     */
    public static void merge(int[] arr, int l, int q, int r) {
        /**因为每次切割后左边下标都是(l,q),右边数组的下标是(q+1,r)
         * 所以左边数组的元素个数就是q - l + 1
         * 右边的数组元素个数就是r - q
         * **/
        final int n1 = q-l+1;//切割后左边数组的数据长度
        final int n2 = r-q;//切割后右边数组的数据长度
        /**创建两个新数组将切割后的数组分别放进去,长度加1是为了放置无穷大的数据标志位**/
        final int[] left = new int[n1+1];//加一操作是增加无穷大标志位
        final int[] right = new int[n2+1];//加一操作是增加无穷大标志位
        //两个循环将数据添加至新数组中
        /**左边的数组下标是从l到q**/
        /**遍历左边的数组*/
        for (int i = 0; i < n1; i++) {
            left[i] = arr[l+i];
        }
        for (int i = 0; i < n2; i++) {
            right[i] = arr[q+1+i];
        }

        //将最大的正整数放在两个新数组的最后一位
        left[n1] = Integer.MAX_VALUE;
        right[n2] = Integer.MAX_VALUE;

        int i = 0,j = 0;
        //遍历两个临时数组,将最小元素依次放进去,最后则为有序数组
        for (int k = l; k <= r; k++) {
            if (left[i]<=right[j]) {
                arr[k] = left[i];
                i = i+1;
            } else {
                arr[k] = right[j];
                j = j+1;
            }
        }
    }
分割步骤

在这里插入图片描述

复杂度分析
平均时间复杂度:O(nlogn)
最佳时间复杂度:O(n)
最差时间复杂度:O(nlogn)
空间复杂度:O(n)
排序方式:In-place
稳定性:稳定
  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
程序员的必经之路! 【限时优惠】 现在下单,还享四重好礼: 1、教学课件免费下载 2、课程案例代码免费下载 3、专属VIP学员群免费答疑 4、下单还送800元编程大礼包 【超实用课程内容】  根据《2019-2020年中国开发者调查报告》显示,超83%的开发者都在使用MySQL数据库。使用量大同时,掌握MySQL早已是运维、DBA的必备技能,甚至部分IT开发岗位也要求对数据库使用和原理有深入的了解和掌握。 学习编程,你可能会犹豫选择 C++ 还是 Java;入门数据科学,你可能会纠结于选择 Python 还是 R;但无论如何, MySQL 都是 IT 从业人员不可或缺的技能!   套餐中一共包含2门MySQL数据库必学的核心课程(共98课时)   课程1:《MySQL数据库从入门到实战应用》   课程2:《高性能MySQL实战课》   【哪些人适合学习这门课程?】  1)平时只接触了语言基础,并未学习任何数据库知识的人;  2)对MySQL掌握程度薄弱的人,课程可以让你更好发挥MySQL最佳性能; 3)想修炼更好的MySQL内功,工作中遇到高并发场景可以游刃有余; 4)被面试官打破沙锅问到底的问题问到怀疑人生的应聘者。 【课程主要讲哪些内容?】 课程一:《MySQL数据库从入门到实战应用》 主要从基础篇,SQL语言篇、MySQL进阶篇三个角度展开讲解,帮助大家更加高效的管理MySQL数据库。 课程二:《高性能MySQL实战课》主要从高可用篇、MySQL8.0新特性篇,性能优化篇,面试篇四个角度展开讲解,帮助大家发挥MySQL的最佳性能的优化方法,掌握如何处理海量业务数据和高并发请求 【你能收获到什么?】  1.基础再提高,针对MySQL核心知识点学透,用对; 2.能力再提高,日常工作中的代码换新貌,不怕问题; 3.面试再加分,巴不得面试官打破沙锅问到底,竞争力MAX。 【课程如何观看?】  1、登录CSDN学院 APP 在我的课程中进行学习; 2、移动端:CSDN 学院APP(注意不是CSDN APP哦)  本课程为录播课,课程永久有效观看时长 【资料开放】 课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化。  下载方式:电脑登录课程观看页面,点击右侧课件,可进行课程资料的打包下载。
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值