分治法-找假币问题

数据结构 专栏收录该内容
9 篇文章 0 订阅

一、分治法

将一个复杂的问题分为规模较小的问题,计算简单的小问题求解,然后综合小问题,得到最终的答案。

基本思路
  • 对于一个规模为N的问题,若该问题可以很容易的解决,则直接解决,否则执行下面操纵
  • 将该问题分解成M个规模较小的问题,这些子问题互相独立,并且与原问题形式相同
  • 地柜的求解子问题
  • 然后将各个问题的解合并到原问题的解

二、假币问题

假币问题:有n枚硬币,其中有一枚是假币,己知假币的重量较轻。现只有一个天平,要求用尽量少的比较次数找出这枚假币。

分析
  • 首先为每个币编号,然后将所有的币等分为两份,放在天平的两边。这样就将区分假币的问题变为区别两堆币的问题。
  • 因为假币分量较轻,因此天平较轻的一侧中一定包含假币。
  • 再将较轻的一侧中币等分为两份,重复上述做法。
  • 直到剩下两枚银币,便可用天平直接找出假币。
java程序算法
public class CheckMoney {
    public static void main(String[] args) {
        int[] arr = {2,2,2,2,2,1};
        int pos = checkMoney(arr, 0, arr.length - 1);
        System.out.println("位置:"+pos);
    }
    //检查
    public static int checkMoney(int arr[],int left,int right) {
        int sum1 = 0, sum2 = 0, sum3 = 0;
        if ((right - left + 1) % 2 == 0) {//数组为偶数
            if (left + 1 == right) {
                if (arr[left] < arr[right]) {//当前剩下两个数,进行比较
                    return left;
                } else {
                    return right;
                }
            } else {//数组里面多于2个数
                int mid = (right - left + 1) / 2 + left;//找出中间位置
                for (int i = left; i < mid; i++) {
                    sum1 += arr[i];//中间靠左的数组集合总和
                    sum2 += arr[right - (i - left)];//中间靠右的数组集合总和
                }
                if(sum1<sum2){
                    return checkMoney(arr,left,mid-1);
                }else {
                    return checkMoney(arr,mid,right);
                }
            }
        } else {//数组为奇数
            int mid = (right - left) / 2 + left;//找出中间位置
            for (int i = left; i < mid; i++) {
                sum1 += arr[i];//中间靠左的数组集合总和
                sum2 += arr[right - (i - left)];//中间靠右的数组集合总和
            }
            if(sum1<sum2){
                return checkMoney(arr,left,mid-1);
            }else if(sum1>sum2) {
                return checkMoney(arr,mid+1,right);
            }else {
                return mid;
            }
        }
    }
}
  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值